中文博彩平台

当前位置: 中文博彩平台 > 中文博彩平台 > 学术活动 > 正文

The dimension of Bernoulli convolutions in R^d

发布日期:2024-12-02点击数:

报告人:任浩杰 博士后 (以色列理工学院)

时间:2024年12月06日 15:30-

腾讯会议ID: 123-233-349

会议链接://meeting.tencent.com/dm/EdcvjXVY6Md1 


摘要:For \((\lambda_1, \ldots, \lambda_d) = \lambda \in (0,1)^d\) with \(\lambda_1 > \ldots > \lambda_d\), the Bernoulli convolution \(\mu_\lambda\) is the distribution of \(\sum_{n \geq 0} \pm (\lambda_1^n, \ldots, \lambda_d^n)\), where the \(\pm\) signs are independent and equally likely. Assuming no \(\lambda_j\) is a root of a polynomial with coefficients in \(\{\pm 1, 0\}\), we prove \(\dim(\mu_\lambda) = \min\{\dim_L(\mu_\lambda), d\}\), where \(\dim_L\) is the Lyapunov dimension.

This generalizes to homogeneous diagonal self-affine systems on \(\mathbb{R}^d\) with rational translations, extending results by Breuillard and Varjú. A key novelty is an explicit higher-dimensional entropy increase result. Joint work with Ariel Rapaport.


邀请人: 数学研究中心


欢迎广大师生积极参与!


关于我们
中文博彩平台-信誉平台 的前身是始建于1929年的重庆大学理学院和1937年建立的重庆大学商学院,理学院是重庆大学最早设立的三个学院之一,首任院长为数学家何鲁先生。